Link Scheduling Using Graph Neural Networks
نویسندگان
چکیده
Efficient scheduling of transmissions is a key problem in wireless networks. The main challenge stems from the fact that optimal link involves solving maximum weighted independent set (MWIS) problem, which known to be NP-hard. In practical schedulers, centralized and distributed greedy heuristics are commonly used approximately solve MWIS problem. However, most these ignore important topological information network. To overcome this limitation, we propose fast based on graph convolutional networks (GCNs) can implemented manners. Our heuristic tree search guided by GCN 1-step rollout. our solver, generates topology-aware node embeddings combined with per-link utilities before invoking solver. Moreover, novel reinforcement learning scheme developed train non-differentiable pipeline. Test results medium-sized show reach near-optimal solution quickly, shallow reduce nearly half suboptimality gap solver minimal increase complexity. proposed schedulers also exhibit good generalizability across weight distributions.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Link Prediction Based on Graph Neural Networks
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks’ matrix representations to learn an embe...
متن کاملLink Scheduling in STDMA Wireless Networks: A Line Graph Approach
We consider point to point link scheduling in Spatial Time Division Multiple Access (STDMA) wireless networks under the physical interference model. We propose a novel link scheduling algorithm based on a line graph representation of the network, by embedding the interferences between pairs of nodes into the edge weights of the line graph. Our algorithm achieves lower schedule length and lower ...
متن کاملFormalizing Neural Networks using Graph Transformations
In this paper a unifying framework for the formal-ization of diierent types of Neural Networks and the corresponding algorithms for computation and training is presented. The used Graph Transformation System ooers a formalism to verify properties of the networks and their algorithms. In addition the presented methodology can be used as a tool to visualize and design diierent types of networks a...
متن کاملSelecting Scheduling Heuristics Using Neural Networks
This paper discusses the application of neural networks to select the best heuristic algorithm to solve a given scheduling problem. The two-stage hybrid owshop with multiple identical parallel machines at the second stage is used as an example to discuss the process of selecting a scheduling heuristic through a neural-network approach. This paper uses the genetic-algorithm-based approach for tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Wireless Communications
سال: 2023
ISSN: ['1536-1276', '1558-2248']
DOI: https://doi.org/10.1109/twc.2022.3222781